Tag Archives: spacer coupling

China Good quality Djm Single Disc Diaphragm Coupling with Locking Device Elastic Spacer Diaphragm Coupling

Product Description

Djm Single Disc Diaphragm Coupling with Locking Device Elastic Spacer Diaphragm Coupling

Description:
The DJM Single Disc Diaphragm Coupling With Locking Device compensates the relative displacement of the 2 axes through the elastic deformation of the diaphragm, and the diaphragm is divided into the connecting rod type and the integral type. The structure is composed of several groups of bolts interlocking with bolts and 2 half couplings. The DJM Single Disc Diaphragm Coupling With Locking Device is connected by the additional cone sleeve and the transmission shaft, so it is also called the conical elastic diaphragm coupling.

Main characteristics:
1. The structure is simple and the weight is light.
2. Do not need maintenance, the naked eye can check the failure.
3.The eccentricity has a large allowable range and can be applied flexibly to various transmission systems.
4. Easy to disassemble and have high assembly importance. 

Paramters:

Packing & shipping:
1 Prevent from damage.
2. As customers’ requirements, in perfect condition.
3. Delivery : As per contract delivery on time
4. Shipping : As per client request. We can accept CIF, Door to Door etc. or client authorized agent we supply all the necessary assistant.

FAQ:
Q 1: Are you a trading company or a manufacturer?
A: We are a professional manufacturer specializing in manufacturing various series of couplings.

Q 2:Can you do OEM?
Yes, we can. We can do OEM & ODM for all the customers with customized artworks in PDF or AI format.

Q 3:How long is your delivery time?
Generally, it is 20-30 days if the goods are not in stock. It is according to quantity.

Q 4: How long is your warranty?
A: Our Warranty is 12 months under normal circumstances.

Q 5: Do you have inspection procedures for coupling?
A:100% self-inspection before packing.

Q 6: Can I have a visit to your factory before the order?
A: Sure, welcome to visit our factory. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard Or Nonstandard: Standard
Shaft Hole: 19-32
Torque: >80N.M
Bore Diameter: 19mm
Speed: 4000r/M
Structure: Flexible
Customization:
Available

|

Customized Request

China Good quality Djm Single Disc Diaphragm Coupling with Locking Device Elastic Spacer Diaphragm Coupling
China Good quality Djm Single Disc Diaphragm Coupling with Locking Device Elastic Spacer Diaphragm Coupling

spacer coupling

What Are the Maintenance Requirements for Spacer Couplings?

Spacer couplings are relatively low-maintenance compared to some other types of couplings. However, regular inspections and preventive measures are essential to ensure their optimal performance and longevity. Here are the key maintenance requirements for spacer couplings:

1. Visual Inspections: Regularly inspect the spacer coupling and its components for signs of wear, damage, or misalignment. Look for any visible cracks, corrosion, or deformation.

2. Lubrication: Some spacer couplings may require periodic lubrication, especially if they have rolling elements such as bearings or if the coupling design necessitates lubrication. Follow the manufacturer’s guidelines for the appropriate lubrication intervals and type of lubricant to use.

3. Alignment Checks: Proper alignment between the connected shafts is crucial for spacer coupling performance. Periodically check and adjust the alignment to ensure that the coupling operates smoothly and efficiently. Misalignment can lead to premature wear and failure of the coupling.

4. Bolt Tightening: Check and tighten the coupling bolts regularly to maintain the desired clamping force. Loose bolts can cause vibrations and compromise the integrity of the coupling connection.

5. Environmental Considerations: In harsh or corrosive environments, pay close attention to the effects of the operating conditions on the coupling. Consider using corrosion-resistant materials or protective coatings to prolong the coupling’s life.

6. Replacement of Worn Components: If any components of the spacer coupling show signs of wear or damage beyond acceptable limits, replace them promptly. This includes components like the spacer, bolts, and locking devices.

7. Regular Maintenance Schedule: Develop a regular maintenance schedule based on the coupling manufacturer’s recommendations and the specific operating conditions of the machinery. A well-maintained coupling can significantly extend the life of the connected equipment.

8. Consult Manufacturer Guidelines: Always refer to the manufacturer’s maintenance guidelines and recommendations. They will provide specific instructions on maintenance intervals and procedures for the particular spacer coupling model.

By following these maintenance practices, you can ensure that the spacer coupling remains in optimal condition, reduces the risk of unexpected failures, and contributes to the overall reliability and efficiency of the machinery it connects.

spacer coupling

Factors to Consider When Choosing a Spacer Coupling for a Specific System

Choosing the right spacer coupling for a specific system requires careful consideration of various factors to ensure optimal performance and reliability. Here are the key factors to keep in mind:

1. Operating Conditions: Understand the operating conditions of the system where the spacer coupling will be used. Consider factors such as torque requirements, rotational speed, temperature range, and environmental conditions (e.g., corrosive, humid, or dusty environments).

2. Misalignment Compensation: Determine the type and magnitude of misalignment that the coupling needs to accommodate. Spacer couplings can handle angular, parallel, and axial misalignments to varying degrees, so selecting the appropriate coupling design is critical.

3. Shaft Sizes and Types: Ensure that the spacer coupling’s bore size matches the shaft diameters of the connected equipment. Additionally, consider whether the shafts are keyed, splined, or have other special features that may require customization of the coupling.

4. Coupling Material: The choice of material for the spacer coupling depends on the application’s requirements. Common materials include steel, stainless steel, aluminum, and various alloys. Consider factors such as strength, corrosion resistance, and temperature limits when selecting the material.

5. Torque and Speed Ratings: Determine the required torque and rotational speed ratings for the coupling based on the power transmission needs of the system. Select a coupling that can handle the specified torque and speed without exceeding its limits.

6. Spacer Length: The length of the spacer in the coupling affects the distance between connected equipment. Ensure that the chosen spacer length allows for proper clearance and alignment between the components.

7. Installation and Maintenance: Consider the ease of installation and maintenance requirements of the spacer coupling. Some couplings may require more frequent maintenance than others, which can impact overall system downtime.

8. Cost and Budget: Evaluate the cost of the spacer coupling and ensure that it fits within the project budget. While cost is a consideration, it is essential not to compromise on quality and performance for the sake of cost savings.

9. Industry Standards and Regulations: Ensure that the chosen spacer coupling complies with relevant industry standards and safety regulations. Adherence to these standards helps guarantee the coupling’s quality and suitability for the intended application.

10. Supplier and Support: Choose a reputable supplier with a track record of providing high-quality spacer couplings. A reliable supplier can offer technical support, assistance with selection, and post-purchase services if required.

By carefully considering these factors and evaluating the specific needs of the system, engineers and designers can select the most appropriate spacer coupling to ensure efficient power transmission, reduce wear on connected equipment, and enhance overall system performance and reliability.

China Good quality Djm Single Disc Diaphragm Coupling with Locking Device Elastic Spacer Diaphragm Coupling  China Good quality Djm Single Disc Diaphragm Coupling with Locking Device Elastic Spacer Diaphragm Coupling
editor by CX 2024-05-02

China high quality ISO Certificated Flexible Flanged Anti-Static Spacer Taper Bore Tire Tyre Coupling for Air Compressor and Vacuum Pumps

Product Description

ISO Certificated Flexible Flanged Anti-Static Spacer Taper Bore Tire Tyre Coupling for Air Compressor and Vacuum Pumps

Product Name: type tire coupling Surface treatment: phosphating, blackening and spraying Coupling type: tire coupling Material: Rubber Scope of application: metallurgy, steel rolling, mining, chemical industry, shipbuilding, pumps, fans, etc. Features: the tire coupling has good shock absorption and buffering effect and the performance of compensating the deviation between axles. It is widely used in the occasions of impact vibration, variable CHINAMFG and reverse rotation and frequent starting.

 

Related products:

Production workshop:

Company information:

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard Or Nonstandard: Standard
Shaft Hole: 19-32
Torque: >80N.M
Bore Diameter: 19mm
Speed: 4000r/M
Structure: Flexible
Samples:
US$ 9999/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

China high quality ISO Certificated Flexible Flanged Anti-Static Spacer Taper Bore Tire Tyre Coupling for Air Compressor and Vacuum Pumps
China high quality ISO Certificated Flexible Flanged Anti-Static Spacer Taper Bore Tire Tyre Coupling for Air Compressor and Vacuum Pumps

spacer coupling

How Do Spacer Couplings Compare to Other Types of Couplings in Terms of Performance?

Spacer couplings offer distinct advantages and disadvantages compared to other types of couplings, making them suitable for specific applications:

1. Misalignment Tolerance: Spacer couplings have limited flexibility and can handle only minor misalignment between shafts. In contrast, flexible couplings like elastomeric and gear couplings can accommodate higher levels of misalignment due to their elastic properties.

2. Torque Transmission: Spacer couplings provide excellent torque transmission capabilities, making them suitable for heavy-duty applications. They can efficiently transfer torque between shafts without backlash.

3. Maintenance Requirements: Spacer couplings are relatively simple in design and do not require frequent maintenance. They do not have moving parts or wearing elements, reducing the need for regular inspection and replacement.

4. Torsional Stiffness: Spacer couplings offer high torsional stiffness, ensuring precise and reliable torque transmission between the connected equipment.

5. Installation and Alignment: Installing a spacer coupling requires careful alignment between shafts. While it may be more involved compared to some flexible couplings, proper alignment is essential for optimal performance.

6. Cost: Spacer couplings are generally more cost-effective than some high-performance flexible couplings, making them an attractive choice for various industrial applications.

7. Application Suitability: Spacer couplings are commonly used in applications where rigid and reliable torque transmission is required, such as pumps, compressors, and other heavy machinery.

8. Operating Conditions: Spacer couplings can handle high temperatures, making them suitable for applications in challenging environments.

When selecting a coupling for a specific application, it is essential to consider the specific needs of the system, including the required misalignment compensation, torque transmission capacity, maintenance requirements, and operating conditions. Each coupling type has its strengths and limitations, and the choice will depend on the unique demands of the application.

spacer coupling

How Does a Spacer Coupling Handle Angular, Parallel, and Axial Misalignment?

A spacer coupling is a type of flexible coupling that is designed to accommodate different types of misalignment between shafts. Here’s how it handles angular, parallel, and axial misalignment:

1. Angular Misalignment: Angular misalignment occurs when the axes of the two shafts are not parallel but intersect at a certain angle. A spacer coupling can handle angular misalignment by allowing the flexible element (such as an elastomeric or metallic component) to flex and bend when the shafts are not perfectly aligned. This bending action allows the coupling to compensate for the angular displacement between the shafts and transmit torque smoothly.

2. Parallel Misalignment: Parallel misalignment occurs when the axes of the two shafts are parallel but are offset laterally. A spacer coupling can handle parallel misalignment by virtue of its design. The spacer element (a cylindrical piece that connects the two coupling halves) provides the required lateral space between the shafts. This space allows the shafts to have a slight offset without inducing excessive stress on the machinery, thereby minimizing the risk of premature wear or failure.

3. Axial Misalignment: Axial misalignment occurs when the two shafts move closer together or farther apart along their axis. Some spacer couplings may have limited axial movement capabilities, which can help accommodate slight axial misalignment. However, it’s essential to ensure that the axial displacement is within the coupling’s specified limits to avoid overloading the coupling or the connected equipment.

Overall, spacer couplings are designed to be flexible and provide some degree of misalignment accommodation, but their ability to handle misalignment depends on their specific design and material properties. It’s essential to select the appropriate type and size of spacer coupling based on the expected misalignment and operational requirements of the machinery to ensure optimal performance and longevity of the coupling and the connected components.

China high quality ISO Certificated Flexible Flanged Anti-Static Spacer Taper Bore Tire Tyre Coupling for Air Compressor and Vacuum Pumps  China high quality ISO Certificated Flexible Flanged Anti-Static Spacer Taper Bore Tire Tyre Coupling for Air Compressor and Vacuum Pumps
editor by CX 2024-05-02

China Standard Spacer Coupling Connector Transmission Parts Best Manufacturer Industrial Stainless Steel Good Price Small Dimensions Transmit Torque Anti-Rusty Spacer Coupling

Product Description

Spacer Coupling Connector Transmission Parts Best Manufacturer Industrial Stainless Steel Good Price Small Dimensions Transmit Torque Anti-Rusty Spacer Coupling

Application of Spacer Coupling

Spacer couplings are used in a wide variety of applications, including:

  • Pumps. Spacer couplings are used in pumps to allow for the removal of the pump mechanical seal without having to move the pump body or the driver.
  • Fans. Spacer couplings are used in fans to allow for the removal of the fan blades without having to move the fan housing or the driver.
  • Conveyors. Spacer couplings are used in conveyors to allow for the removal of the conveyor belt without having to move the conveyor frame or the driver.
  • Other applications. Spacer couplings are also used in a variety of other applications, such as:
    • Wind turbines
    • Elevators
    • Robotics
    • Machine tools

Spacer couplings offer a number of advantages over traditional couplings, including:

  • Ease of maintenance. Spacer couplings make it easy to remove and replace components, such as pump mechanical seals, fan blades, and conveyor belts. This can save time and money on maintenance costs.
  • Increased flexibility. Spacer couplings can accommodate misalignment between the shafts of the driver and the driven machine. This can be helpful in applications where there is a risk of misalignment, such as in earthquake-prone areas.
  • Improved safety. Spacer couplings can help to prevent catastrophic failures in the event of misalignment. This can protect people and property from damage.

As a result of these advantages, spacer couplings are becoming increasingly popular in a wide range of applications.

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard Or Nonstandard: Standard
Shaft Hole: 19-32
Torque: >80N.M
Bore Diameter: 19mm
Speed: 4000r/M
Structure: Flexible
Samples:
US$ 9999/Piece
1 Piece(Min.Order)

|
Request Sample

China Standard Spacer Coupling Connector Transmission Parts Best Manufacturer Industrial Stainless Steel Good Price Small Dimensions Transmit Torque Anti-Rusty Spacer Coupling
China Standard Spacer Coupling Connector Transmission Parts Best Manufacturer Industrial Stainless Steel Good Price Small Dimensions Transmit Torque Anti-Rusty Spacer Coupling

spacer coupling

Can Spacer Couplings Be Used in Both Horizontal and Vertical Shaft Arrangements?

Yes, spacer couplings can be used in both horizontal and vertical shaft arrangements. The design of spacer couplings allows them to accommodate misalignment between shafts and transmit torque while maintaining a reliable connection. Here’s how they can be used in each configuration:

1. Horizontal Shaft Arrangements:

In horizontal shaft arrangements, the spacer coupling is installed between two shafts that are aligned on the same horizontal plane. The spacer coupling connects the two shaft ends and compensates for any radial, axial, or angular misalignment between them. This configuration is commonly used in various industrial applications, including conveyor systems, pumps, compressors, and fans.

2. Vertical Shaft Arrangements:

In vertical shaft arrangements, the spacer coupling is used to connect two shafts that are aligned on a vertical plane. This configuration is often found in applications where space is limited, and the mechanical equipment is stacked vertically. Spacer couplings in vertical arrangements can handle both the torque and the weight of the rotating components. The design should account for the additional force due to gravity acting on the connected equipment.

Advantages of Using Spacer Couplings:

– Spacer couplings provide flexibility and ease of installation in both horizontal and vertical shaft arrangements.

– They accommodate misalignment, reducing the risk of premature wear and increasing the lifespan of the connected equipment.

– Spacer couplings are available in various designs and materials, making them suitable for a wide range of applications.

– They allow for easy maintenance and replacement of components without the need to disassemble the entire system.

Note: When selecting a spacer coupling for a specific application, it is essential to consider factors such as torque requirements, operating conditions, and the level of misalignment expected in the system. Following the manufacturer’s guidelines for installation, maintenance, and usage is crucial to ensure the spacer coupling’s optimal performance and longevity in both horizontal and vertical shaft arrangements.

spacer coupling

Can Spacer Couplings be Used in Applications with Varying Operating Temperatures?

Yes, spacer couplings can be used in applications with varying operating temperatures. The suitability of a spacer coupling for a specific temperature range depends on the materials used in its construction.

Many spacer couplings are designed to withstand a wide range of temperatures, making them versatile for use in diverse industrial environments. Some key considerations regarding temperature and spacer couplings include:

1. Material Selection: The choice of materials plays a crucial role in determining the temperature range that a spacer coupling can handle. Common materials used for spacer couplings include steel, stainless steel, aluminum, and various alloys. Each material has its own temperature limits, and it is essential to select a coupling made from materials that can withstand the anticipated temperature conditions in the application.

2. High-Temperature Applications: For high-temperature applications, spacer couplings made from materials with excellent heat resistance are suitable. Stainless steel and high-temperature alloys are often used in such cases. These materials can withstand elevated temperatures without losing their mechanical properties, ensuring reliable performance under extreme conditions.

3. Low-Temperature Applications: In low-temperature environments, certain materials may become brittle and lose their toughness. Spacer couplings intended for use in cold environments should be made from materials that remain ductile and reliable at low temperatures. Special low-temperature steels or alloys are commonly used for these applications.

4. Thermal Expansion: Spacer couplings should also account for the thermal expansion that occurs in machinery as it operates at varying temperatures. Different materials have different coefficients of thermal expansion, and the design of the coupling must consider these factors to prevent issues related to differential thermal expansion between connected components.

5. Insulation: In some applications, particularly in industries where electrical insulation is critical, spacer couplings with insulating properties may be necessary to prevent electrical conduction between connected shafts. Insulating spacer couplings are commonly used in electric motor drives and other electrical systems to enhance safety and prevent electrical interference.

When selecting a spacer coupling for an application with varying operating temperatures, it is essential to consider the specific temperature requirements of the system, the materials used in the coupling’s construction, and any additional factors related to thermal expansion and insulation. Consulting with coupling manufacturers or experts can help ensure the correct coupling is chosen for the specific temperature conditions in which it will operate.

China Standard Spacer Coupling Connector Transmission Parts Best Manufacturer Industrial Stainless Steel Good Price Small Dimensions Transmit Torque Anti-Rusty Spacer Coupling  China Standard Spacer Coupling Connector Transmission Parts Best Manufacturer Industrial Stainless Steel Good Price Small Dimensions Transmit Torque Anti-Rusty Spacer Coupling
editor by CX 2024-04-30

China high quality Best Quality Full Spacer Grid Coupling with Manufacture Price

Product Description

                                     JS600 Series Grid Coupling

Grid Coupling is widely used in metallurgy, mining, lifting, transportation, petroleum, chemical, ships, textile, light industry, agricultural machinery, printing machines and pumps, fans, compressors, machine tools and other mechanical equipment and industry shaft transmission.

Feature
1.The serpentine spring as the elastic element, the elastic strong at the same time, greatly improves the grid coupling torque, widely used in heavy machinery and general    machinery.The serpentine spring special technology department, has long service life, allowing higher speed, has good ability to compensate in the axial, radial and angle

2.High transmission efficiency, start safety. Transmission efficiency of up to 99.47%, short-time overload capacity is 2 times the rated torque, operation safety.

3.Simple structure, convenient assembly and disassembly, long service life

4.Damping effect is good to avoid the resonance.

♦Basic Parameter And Main Dimension

Brake wheel
Diameter×
thickness
E×F
Model Nominal
Torque
Nm
Speed
r/min
Y,Z Bore
d1,d2
D L A G P M N W Clearance (K) No bore mass
Kg
Max Min One-way brake wheel Two-
way brake wheel
Min Standard Max
120×60 JS601 10 4500 28 14 98 52 40 35 95 35 65 62 92 1.5 3 5 0.03
125×70 JS602 35 4500 35 14 110 52 50 35 105 35 70 62 92 1.5 3 5 0.03
140×82 JS603 65 4170 42 14 120 52 55 35 117 35 76 62 92 1.5 3 5 0.06
180×108 JS604 117 3270 48 14 138 62 65 40 148 40 94 62 92 1.5 3 5 0.06
205×90 JS605 207 2870 55 19 155 62 75 45 135 46 90 87 117 1.5 3 5 0.09
255×95 JS606 328 2300 65 19 170 82 90 47 142 48 94.5 87 117 1.5 3 5 0.09
280×128 JS607 630 2080 75 28 195 112 105 60 188 58 124 87 152 1.5 4 6.5 0.17
330×145 JS608 1000 1770 85 28 212 112 125 14 159 109 86.5 87 152 1.5 4 6.5 0.26
405×170 JS609 1800 1430 100 42 248 142 140 16 186 138 101 122 152 1.5 6 10 0.43
485×220 JS610 2800 1200 110 42 274 142 160 -7 213 168 103 147 167 1.5 6 10 0.51
535×250 JS611 4300 1100 125 60 324 142 180 -7 243 200 118 147 167 1.5 6 13 0.74
585×285 JS612 6000 1000 150 70 368 172 220 -25 260 250 84.5 152 182 1.5 6 13 0.91
670×305 JS613 8700 850 180 70 400 172 255 0 300 275 150 152 182 1.5 6 13 1.14
760×305 JS614 12000 765 200 110 458 212 270 0 305 275 152.5 182 182 3 6 13 1.9
765×310 JS615 16000 765 220 120 500 212 305 0 310 275 155 197 197 3 6 13 2.8

♦Product Show
 

♦Other Products List

Transmission Machinery 
Parts Name
Model
Universal Coupling WS,WSD,WSP
Cardan Shaft SWC,SWP,SWZ
Tooth Coupling CL,CLZ,GCLD,GIICL,
GICL,NGCL,GGCL,GCLK
Disc Coupling JMI,JMIJ,JMII,JMIIJ
High Flexible Coupling LM
Chain Coupling GL
Jaw Coupling LT
Grid Coupling JS

Our Company

HangZhou CHINAMFG Machinery Manufacturing Co., Ltd. is a high-tech enterprise specializing in the design and manufacture of various types of coupling. There are 86 employees in our company, including 2 senior engineers and no fewer than 20 mechanical design and manufacture, heat treatment, welding, and other professionals.

Advanced and reasonable process, complete detection means. Our company actively introduces foreign advanced technology and equipment, on the basis of the condition, we make full use of the advantage and do more research and innovation. Strict to high quality and operate strictly in accordance with the ISO9000 quality certification system standard mode.

Our company supplies different kinds of products. High quality and reasonable price. We stick to the principle of “quality first, service first, continuous improvement and innovation to meet the customers” for the management and “zero defect, zero complaints” as the quality objective. 

Our Services
1.Design Services
Our design team has experience in cardan shaft relating to product design and development. If you have any needs for your new product or wish to make further improvements, we are here to offer our support.

2.Product Services
raw materials → Cutting → Forging →Rough machining →Shot blasting →Heat treatment →Testing →Fashioning →Cleaning→ Assembly→Packing→Shipping

3.Samples Procedure
We could develop the sample according to your requirement and amend the sample constantly to meet your need.

4.Research & Development
We usually research the new needs of the market and develop the new model when there is new cars in the market.

5.Quality Control
Every step should be special test by Professional Staff according to the standard of ISO9001 and TS16949.

FAQ
Q 1: Are you trading company or manufacturer?
A: We are a professional manufacturer specializing in manufacturing
various series of couplings.

Q 2:Can you do OEM?
Yes, we can. We can do OEM & ODM for all the customers with customized artworks of PDF or AI format.

Q 3:How long is your delivery time?
Generally it is 20-30 days if the goods are not in stock. It is according to quantity.

Q 4: Do you provide samples ? Is it free or extra ?
Yes, we could offer the sample but not for free.Actually we have a very good price principle, when you make the bulk order then cost of sample will be deducted.

Q 5: How long is your warranty?
A: Our Warranty is 12 month under normal circumstance.

Q 6: What is the MOQ?
A:Usually our MOQ is 1pcs.

Q 7: Do you have inspection procedures for coupling ?
A:100% self-inspection before packing.

Q 8: Can I have a visit to your factory before the order?
A: Sure,welcome to visit our factory.

Q 9: What’s your payment?
A:1) T/T. 

Contact Us
Web: huadingcoupling
Add: No.11 HangZhou Road,Chengnan park,HangZhou City,ZheJiang Province,China /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard Or Nonstandard: Standard
Shaft Hole: 10-32
Torque: 70-80N.M
Bore Diameter: 19mm
Speed: 10000r/M
Structure: Flexible
Samples:
US$ 500/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

China high quality Best Quality Full Spacer Grid Coupling with Manufacture Price
China high quality Best Quality Full Spacer Grid Coupling with Manufacture Price

spacer coupling

Can Spacer Couplings Be Used in Both Horizontal and Vertical Shaft Arrangements?

Yes, spacer couplings can be used in both horizontal and vertical shaft arrangements. The design of spacer couplings allows them to accommodate misalignment between shafts and transmit torque while maintaining a reliable connection. Here’s how they can be used in each configuration:

1. Horizontal Shaft Arrangements:

In horizontal shaft arrangements, the spacer coupling is installed between two shafts that are aligned on the same horizontal plane. The spacer coupling connects the two shaft ends and compensates for any radial, axial, or angular misalignment between them. This configuration is commonly used in various industrial applications, including conveyor systems, pumps, compressors, and fans.

2. Vertical Shaft Arrangements:

In vertical shaft arrangements, the spacer coupling is used to connect two shafts that are aligned on a vertical plane. This configuration is often found in applications where space is limited, and the mechanical equipment is stacked vertically. Spacer couplings in vertical arrangements can handle both the torque and the weight of the rotating components. The design should account for the additional force due to gravity acting on the connected equipment.

Advantages of Using Spacer Couplings:

– Spacer couplings provide flexibility and ease of installation in both horizontal and vertical shaft arrangements.

– They accommodate misalignment, reducing the risk of premature wear and increasing the lifespan of the connected equipment.

– Spacer couplings are available in various designs and materials, making them suitable for a wide range of applications.

– They allow for easy maintenance and replacement of components without the need to disassemble the entire system.

Note: When selecting a spacer coupling for a specific application, it is essential to consider factors such as torque requirements, operating conditions, and the level of misalignment expected in the system. Following the manufacturer’s guidelines for installation, maintenance, and usage is crucial to ensure the spacer coupling’s optimal performance and longevity in both horizontal and vertical shaft arrangements.

spacer coupling

What Role Does a Spacer Coupling Play in Reducing Downtime and Maintenance Costs?

A spacer coupling plays a crucial role in reducing downtime and maintenance costs in rotating machinery by offering the following benefits:

1. Misalignment Compensation: Rotating equipment is subject to various types of misalignment during operation, which can lead to premature wear and failure of components. Spacer couplings can accommodate angular, parallel, and axial misalignment between shafts, which helps minimize the stress on the connected equipment. By reducing the impact of misalignment, spacer couplings contribute to extending the service life of the machinery and its components.

2. Vibration Damping: Vibrations in rotating machinery can lead to increased wear, fatigue, and reduced efficiency. Spacer couplings often include flexible elements made of elastomeric materials that act as vibration dampers. These elements absorb and dissipate vibration energy, reducing the transmission of harmful vibrations to the connected equipment. As a result, the machinery operates more smoothly and experiences less stress, leading to lower maintenance requirements.

3. Shock Load Absorption: During the operation of machinery, sudden shock loads may occur due to starting or stopping processes or external impacts. Spacer couplings with elastomeric or metallic flexible elements can absorb and cushion these shock loads, protecting the connected equipment from damage. By mitigating the effects of shock loads, spacer couplings contribute to the reliability and longevity of the machinery.

4. Easy Maintenance and Replacement: Spacer couplings are designed for ease of maintenance. In the event of a failure or wear of the flexible element, the coupling can be easily disassembled and the damaged component replaced, reducing downtime. The modular design of spacer couplings simplifies the maintenance process, helping to minimize the time required for repairs and reducing associated maintenance costs.

5. Corrosion Resistance: Many spacer couplings are manufactured using materials with excellent corrosion resistance, such as stainless steel or coated alloys. This corrosion resistance extends the service life of the coupling and reduces the need for frequent replacements or maintenance due to corrosion-related issues.

6. Reliability and Dependability: Spacer couplings are known for their robustness and reliability. When properly selected, installed, and maintained, they provide a dependable means of power transmission. The reduction in unplanned downtime due to coupling failure contributes to overall operational efficiency and lower maintenance costs.

In summary, spacer couplings help reduce downtime and maintenance costs in rotating machinery by accommodating misalignment, damping vibrations, absorbing shock loads, and offering ease of maintenance. Their reliability and ability to protect connected equipment contribute to improved operational efficiency and longer service life of the machinery, leading to cost savings over time.

China high quality Best Quality Full Spacer Grid Coupling with Manufacture Price  China high quality Best Quality Full Spacer Grid Coupling with Manufacture Price
editor by CX 2024-04-30

China wholesaler Gear Coupling Flexible Fluid Flange HRC Spacer Pin Mh Rigid Nm Jaw Steel Chain Brake Standard Drum Wheel Rolling Shaft Steel Transmission Parts

Product Description

Gear coupling flexible Fluid Flange HRC Spacer PIN MH Rigid NM Jaw Steel chain brake standard drum wheel rolling shaft steel transmission parts 

Ever-Power industry is 1 of the biggest couplings manufacturer in China, have already exported lots of gear couplings, Jaw couplings, chain couplings etc.. to Japan, Korea, Italy , USA ….. 
Application of Gear coupling

Gear couplings are used in a wide variety of applications, including:

  • Pumps
  • Compressors
  • Fans
  • Generators
  • Wind turbines
  • Conveyors
  • Mixers
  • Mills
  • Machine tools
  • Vehicles

Gear couplings are used to transmit power between 2 shafts that are not perfectly aligned. They can also be used to absorb shock and vibration, and to protect the equipment from damage.

There are many different types of gear couplings available, each with its own advantages and disadvantages. The type of coupling that is best for a particular application will depend on the size and type of equipment, the amount of power that needs to be transmitted, and the environment in which the equipment will be used.

Here are some of the benefits of using gear couplings:

  • High efficiency: Gear couplings are very efficient at transmitting power. This is due to the fact that the gears in the coupling help to reduce friction.
  • Long life: Gear couplings are very durable and can last for many years with proper maintenance.
  • Low maintenance: Gear couplings require very little maintenance. This is because they are self-lubricating and do not need to be greased or oiled.
  • Wide range of applications: Gear couplings can be used in a wide variety of applications. This makes them a versatile and cost-effective option for many businesses.

If you are looking for a reliable and efficient means of power transmission, gear couplings are a great option. They are available in a wide range of sizes and styles to meet the needs of different applications. Gear couplings are also relatively inexpensive, making them a cost-effective choice.

Main range of Couplings

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard Or Nonstandard: Standard
Shaft Hole:
Torque:
Bore Diameter:
Speed:
Structure:
Samples:
US$ 999/Piece
1 Piece(Min.Order)

|
Request Sample

China wholesaler Gear Coupling Flexible Fluid Flange HRC Spacer Pin Mh Rigid Nm Jaw Steel Chain Brake Standard Drum Wheel Rolling Shaft Steel Transmission Parts
China wholesaler Gear Coupling Flexible Fluid Flange HRC Spacer Pin Mh Rigid Nm Jaw Steel Chain Brake Standard Drum Wheel Rolling Shaft Steel Transmission Parts

spacer coupling

Can Spacer Couplings Accommodate High Torque and High-Speed Applications?

Yes, spacer couplings are designed to accommodate both high torque and high-speed applications. These couplings are known for their ability to transmit torque efficiently between shafts and handle various operating conditions. The design and material selection of spacer couplings allow them to excel in demanding industrial settings. Here’s how they handle high torque and high-speed applications:

1. Torque Capacity: Spacer couplings are often constructed with robust materials such as steel or stainless steel, which provide high torque capacity. The coupling’s design and material properties allow it to transmit substantial amounts of torque without failure. In heavy-duty applications, where high torque is prevalent, spacer couplings are a preferred choice.

2. High-Speed Operation: Spacer couplings are also well-suited for high-speed applications. The design of the coupling ensures a secure connection between the shafts while maintaining balance during rotation. The coupling’s precise machining and balance prevent vibration and misalignment, allowing for smooth operation at high rotational speeds.

3. Torsional Stiffness: Spacer couplings have good torsional stiffness, meaning they resist twisting under torque. This characteristic is essential for high-speed applications, as it helps maintain accurate shaft synchronization and minimizes torsional vibrations.

4. Customization: Manufacturers offer various spacer coupling designs and sizes to cater to specific torque and speed requirements. Depending on the application’s demands, users can select spacer couplings with the appropriate torque and speed ratings.

5. Maintenance: Proper maintenance is essential for ensuring that spacer couplings continue to handle high torque and high-speed applications effectively. Regular inspections, lubrication, and alignment checks can help identify and address potential issues before they escalate into problems.

When choosing a spacer coupling for high torque and high-speed applications, it is crucial to consider factors like the application’s torque and speed requirements, environmental conditions, and the coupling’s material and design specifications. Proper selection and installation of the spacer coupling contribute to the reliable and efficient performance of the machinery.

spacer coupling

Factors to Consider When Choosing a Spacer Coupling for a Specific System

Choosing the right spacer coupling for a specific system requires careful consideration of various factors to ensure optimal performance and reliability. Here are the key factors to keep in mind:

1. Operating Conditions: Understand the operating conditions of the system where the spacer coupling will be used. Consider factors such as torque requirements, rotational speed, temperature range, and environmental conditions (e.g., corrosive, humid, or dusty environments).

2. Misalignment Compensation: Determine the type and magnitude of misalignment that the coupling needs to accommodate. Spacer couplings can handle angular, parallel, and axial misalignments to varying degrees, so selecting the appropriate coupling design is critical.

3. Shaft Sizes and Types: Ensure that the spacer coupling’s bore size matches the shaft diameters of the connected equipment. Additionally, consider whether the shafts are keyed, splined, or have other special features that may require customization of the coupling.

4. Coupling Material: The choice of material for the spacer coupling depends on the application’s requirements. Common materials include steel, stainless steel, aluminum, and various alloys. Consider factors such as strength, corrosion resistance, and temperature limits when selecting the material.

5. Torque and Speed Ratings: Determine the required torque and rotational speed ratings for the coupling based on the power transmission needs of the system. Select a coupling that can handle the specified torque and speed without exceeding its limits.

6. Spacer Length: The length of the spacer in the coupling affects the distance between connected equipment. Ensure that the chosen spacer length allows for proper clearance and alignment between the components.

7. Installation and Maintenance: Consider the ease of installation and maintenance requirements of the spacer coupling. Some couplings may require more frequent maintenance than others, which can impact overall system downtime.

8. Cost and Budget: Evaluate the cost of the spacer coupling and ensure that it fits within the project budget. While cost is a consideration, it is essential not to compromise on quality and performance for the sake of cost savings.

9. Industry Standards and Regulations: Ensure that the chosen spacer coupling complies with relevant industry standards and safety regulations. Adherence to these standards helps guarantee the coupling’s quality and suitability for the intended application.

10. Supplier and Support: Choose a reputable supplier with a track record of providing high-quality spacer couplings. A reliable supplier can offer technical support, assistance with selection, and post-purchase services if required.

By carefully considering these factors and evaluating the specific needs of the system, engineers and designers can select the most appropriate spacer coupling to ensure efficient power transmission, reduce wear on connected equipment, and enhance overall system performance and reliability.

China wholesaler Gear Coupling Flexible Fluid Flange HRC Spacer Pin Mh Rigid Nm Jaw Steel Chain Brake Standard Drum Wheel Rolling Shaft Steel Transmission Parts  China wholesaler Gear Coupling Flexible Fluid Flange HRC Spacer Pin Mh Rigid Nm Jaw Steel Chain Brake Standard Drum Wheel Rolling Shaft Steel Transmission Parts
editor by CX 2024-04-29

China supplier Double-Piloted Design Jsj Spacer Grid Coupling High Speed Transmission Shaft Flexible Snake Spring Coupling

Product Description

Double-Piloted Design Jsj Spacer Grid  Coupling

Description:
Grid Coupling is widely used in metallurgy, mining, lifting, transportation, petroleum, chemical, ships, textile, light industry, agricultural machinery, printing machines and pumps, fans, compressors, machine tools, and other mechanical equipment and industry shaft transmission.

Features:
1. The serpentine spring as the elastic element, the elastic strong at the same time, greatly improve the grid coupling torque, widely used in heavy machinery and general machinery. The serpentine spring special technology department, has a long service life, allowing higher speed, has a good ability to compensate in the axial, radial, and angle
2. High transmission efficiency, start safety. Transmission efficiency of up to 99.47%, short-time overload capacity is 2 times the rated torque, and operation safety.
3. Simple structure, convenient assembly, and disassembly, long service life
4. Damping effect is good to avoid resonance.

Parameters:

Packing & shipping:
1 Prevent from damage.
2. As customers’ requirements, in perfect condition.
3. Delivery : As per contract delivery on time
4. Shipping : As per client request. We can accept CIF, Door to Door etc. or client authorized agent we supply all the necessary assistant.

FAQ:
Q 1: Are you a trading company or a manufacturer?
A: We are a professional manufacturer specializing in manufacturing various series of couplings.

Q 2:Can you do OEM?
Yes, we can. We can do OEM & ODM for all the customers with customized artworks in PDF or AI format.

Q 3:How long is your delivery time?
Generally, it is 20-30 days if the goods are not in stock. It is according to quantity.

Q 4: How long is your warranty?
A: Our Warranty is 12 months under normal circumstances.

Q 5: Do you have inspection procedures for coupling?
A:100% self-inspection before packing.

Q 6: Can I have a visit to your factory before the order?
A: Sure, welcome to visit our factory. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard Or Nonstandard: Standard
Shaft Hole: 19-32
Torque: >80N.M
Bore Diameter: 19mm
Speed: 4000r/M
Structure: Flexible
Customization:
Available

|

Customized Request

China supplier Double-Piloted Design Jsj Spacer Grid Coupling High Speed Transmission Shaft Flexible Snake Spring Coupling
China supplier Double-Piloted Design Jsj Spacer Grid Coupling High Speed Transmission Shaft Flexible Snake Spring Coupling

spacer coupling

Are There Any Safety Considerations When Using Spacer Couplings in Rotating Machinery?

Yes, there are several safety considerations to keep in mind when using spacer couplings in rotating machinery. Proper installation, maintenance, and operational practices are essential to ensure the safe and reliable functioning of the couplings and the connected machinery. Here are some important safety considerations:

1. Proper Installation: It is crucial to follow the manufacturer’s guidelines and instructions during the installation of spacer couplings. Improper installation can lead to misalignment, uneven loading, and premature wear, which may compromise the safety and performance of the system.

2. Regular Maintenance: Routine maintenance is necessary to keep spacer couplings in optimal condition. Regular inspections can help identify wear, misalignment, or other issues early on, preventing potential failures and ensuring safe operation.

3. Torque and Speed Limits: Always adhere to the recommended torque and speed limits provided by the coupling manufacturer. Exceeding these limits can lead to coupling failure, which may cause damage to the equipment and pose safety risks to personnel.

4. Alignment and Balance: Proper shaft alignment and balance are crucial for the safe operation of rotating machinery. Misalignment can lead to increased stress on the coupling and the connected components, resulting in premature wear and potential failures.

5. Temperature Considerations: Ensure that the spacer coupling’s material and design are suitable for the operating temperature range of the application. Extreme temperatures can affect the coupling’s mechanical properties and lead to reduced performance or failure.

6. Emergency Shutdown Procedures: Implement clear emergency shutdown procedures in case of coupling failure or other mechanical issues. Employees should be familiar with these procedures and have access to emergency shutdown controls.

7. Lubrication: Proper lubrication is essential to reduce friction and wear in spacer couplings. Ensure that the couplings are adequately lubricated according to the manufacturer’s recommendations.

8. Regular Inspections: Periodically inspect the spacer couplings for signs of wear, corrosion, or damage. Replace any worn or damaged couplings promptly to prevent safety hazards.

9. Compliance with Regulations: Ensure that the use of spacer couplings complies with relevant safety regulations and industry standards to maintain a safe working environment.

By taking these safety considerations into account and following best practices, the use of spacer couplings in rotating machinery can be safe and effective, contributing to the reliable operation of industrial processes while minimizing the risk of accidents or failures.

spacer coupling

Impact of Spacer Couplings on the Overall Reliability of Connected Equipment

Spacer couplings play a critical role in enhancing the overall reliability and performance of connected equipment in power transmission systems. Here are the ways spacer couplings impact equipment reliability:

1. Misalignment Compensation: Spacer couplings can accommodate various types of misalignment, including angular, parallel, and axial misalignment. By allowing for flexible alignment between the connected shafts, spacer couplings help prevent undue stress and wear on the equipment components. This feature minimizes the risk of premature failures due to misalignment issues.

2. Vibration Damping: Spacer couplings act as shock absorbers, dampening vibrations and shocks generated during the operation of rotating machinery. By absorbing and dispersing these forces, spacer couplings reduce the transmission of vibrations to the connected equipment. This, in turn, reduces the risk of fatigue and vibration-induced failures, contributing to improved equipment reliability.

3. Overload Protection: In the event of sudden overload or torque spikes, spacer couplings can help protect the connected equipment from damage. The flexibility of spacer couplings allows them to absorb and dissipate excess torque or shock loads, preventing catastrophic failures in the system.

4. Reducing Wear and Tear: Spacer couplings minimize friction between shafts and mechanical components by allowing smooth and flexible movement. This reduces wear and tear on shafts, bearings, and other elements, leading to extended equipment life and enhanced reliability.

5. Enhanced Service Life: The ability of spacer couplings to compensate for misalignment and reduce vibration-related stress on connected equipment components results in extended service life for the machinery. By reducing the occurrence of breakdowns and the need for frequent repairs, spacer couplings contribute to overall system reliability.

6. Maintenance Simplification: Spacer couplings often require less maintenance compared to rigid couplings. Their ability to handle misalignment reduces the need for frequent realignment, and their design typically includes fewer moving parts, reducing the likelihood of maintenance-related issues. This simplification of maintenance procedures contributes to improved equipment reliability.

7. Contamination Prevention: Some spacer couplings are designed to protect against the ingress of contaminants such as dirt, dust, and moisture. By preventing the entry of harmful particles, spacer couplings help maintain the integrity of the connected equipment, reducing the risk of component damage and improving overall reliability.

8. Application-Specific Design: Spacer couplings are available in various designs and materials to suit specific applications and industries. Choosing the appropriate spacer coupling that meets the unique requirements of the application further enhances the overall reliability and performance of the connected equipment.

Overall, spacer couplings promote smooth power transmission, minimize stress and wear on equipment components, and protect against adverse operating conditions. By contributing to increased equipment reliability and service life, spacer couplings play a crucial role in the efficiency and longevity of rotating machinery and power transmission systems.

China supplier Double-Piloted Design Jsj Spacer Grid Coupling High Speed Transmission Shaft Flexible Snake Spring Coupling  China supplier Double-Piloted Design Jsj Spacer Grid Coupling High Speed Transmission Shaft Flexible Snake Spring Coupling
editor by CX 2024-04-29

China Professional ISO Certificated Flexible Flanged Anti-Static Spacer Taper Bore Tire Tyre Coupling for Air Compressor and Vacuum Pumps

Product Description

ISO Certificated Flexible  Flanged Anti-Static Spacer Taper Bore tire Tyre Coupling for Air Compressor and Vacuum Pumps

Product Name: type tire coupling
Surface treatment: phosphating, blackening and spraying
Coupling type: tire coupling
Material: Rubber
Scope of application: metallurgy, steel rolling, mining, chemical industry, shipbuilding, pumps, fans, etc.
Features: the tire coupling has good shock absorption and buffering effect and the performance of compensating the deviation between axles. It is widely used in the occasions of impact vibration, variable CHINAMFG and reverse rotation and frequent starting

1.High elastic material, silent work.

The ability of compensating relative displacement of 2 shafts is large, and the transmission torque is 10-2500n. M

2.Selected 45 steel, reliable quality.

The coupling theme is made of high quality 45 # steel

3.Deburring and smooth surface.

4.Complete models, a large number of stock, complete specifications.

Support non-standard customization. Please contact customer service. Various styles and complete types. Welcome to order!

5.Good damping. No lubrication, working temperature is 20-80 ºC
 

Related Products

Company Information
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard Or Nonstandard: Standard
Shaft Hole: 19-32
Torque: >80N.M
Bore Diameter: 19mm
Speed: 4000r/M
Structure: Flexible
Samples:
US$ 9999/Piece
1 Piece(Min.Order)

|
Request Sample

China Professional ISO Certificated Flexible Flanged Anti-Static Spacer Taper Bore Tire Tyre Coupling for Air Compressor and Vacuum Pumps
China Professional ISO Certificated Flexible Flanged Anti-Static Spacer Taper Bore Tire Tyre Coupling for Air Compressor and Vacuum Pumps

spacer coupling

Can Spacer Couplings Handle Misalignment Between Shafts?

Spacer couplings are designed to handle some degree of misalignment between shafts, but their capacity to do so depends on the specific coupling design and the magnitude of the misalignment.

Unlike flexible couplings, which can accommodate significant misalignment through their elastic properties, spacer couplings are generally less forgiving when it comes to misalignment. However, they can tolerate limited angular, parallel, and axial misalignment.

The amount of allowable misalignment for a spacer coupling depends on factors such as:

  • Coupling Design: Some spacer couplings, such as the sleeve or muff coupling, have relatively more flexibility and can handle more misalignment than others.
  • Coupling Size: Larger spacer couplings may have a higher misalignment capacity than smaller ones.
  • Material: Certain materials used in manufacturing spacer couplings may provide some level of flexibility to accommodate misalignment.
  • Application Requirements: The specific needs of the application, including the type of connected equipment and the expected operating conditions, will influence the acceptable misalignment range.

It is essential to consider the manufacturer’s specifications and recommendations when using spacer couplings to ensure that the misalignment falls within the permissible limits. Excessive misalignment can lead to premature wear, increased vibration, and reduced coupling life. Therefore, precise alignment during installation is critical for optimal performance and longevity of the spacer coupling and the connected machinery.

spacer coupling

How Does a Spacer Coupling Handle Angular, Parallel, and Axial Misalignment?

A spacer coupling is a type of flexible coupling that is designed to accommodate different types of misalignment between shafts. Here’s how it handles angular, parallel, and axial misalignment:

1. Angular Misalignment: Angular misalignment occurs when the axes of the two shafts are not parallel but intersect at a certain angle. A spacer coupling can handle angular misalignment by allowing the flexible element (such as an elastomeric or metallic component) to flex and bend when the shafts are not perfectly aligned. This bending action allows the coupling to compensate for the angular displacement between the shafts and transmit torque smoothly.

2. Parallel Misalignment: Parallel misalignment occurs when the axes of the two shafts are parallel but are offset laterally. A spacer coupling can handle parallel misalignment by virtue of its design. The spacer element (a cylindrical piece that connects the two coupling halves) provides the required lateral space between the shafts. This space allows the shafts to have a slight offset without inducing excessive stress on the machinery, thereby minimizing the risk of premature wear or failure.

3. Axial Misalignment: Axial misalignment occurs when the two shafts move closer together or farther apart along their axis. Some spacer couplings may have limited axial movement capabilities, which can help accommodate slight axial misalignment. However, it’s essential to ensure that the axial displacement is within the coupling’s specified limits to avoid overloading the coupling or the connected equipment.

Overall, spacer couplings are designed to be flexible and provide some degree of misalignment accommodation, but their ability to handle misalignment depends on their specific design and material properties. It’s essential to select the appropriate type and size of spacer coupling based on the expected misalignment and operational requirements of the machinery to ensure optimal performance and longevity of the coupling and the connected components.

China Professional ISO Certificated Flexible Flanged Anti-Static Spacer Taper Bore Tire Tyre Coupling for Air Compressor and Vacuum Pumps  China Professional ISO Certificated Flexible Flanged Anti-Static Spacer Taper Bore Tire Tyre Coupling for Air Compressor and Vacuum Pumps
editor by CX 2024-04-26

China wholesaler Drive Pipe Spline Shaft Disc Flange Gear Rubber Jaw Motor Spacer Beam Rigid Fluid Chain Nm Mh HRC Pin Fenaflex Spacer Elastomeric Flexible Gear Coupling

Product Description

Drive Pipe Spline Shaft Disc Flange Gear Rubber Jaw Motor Spacer Beam Rigid Fluid Chain Nm Mh HRC Pin Fenaflex Spacer Elastomeric flexible gear Coupling

Application of Shaft Chain Coupling

A shaft chain coupling is a type of coupling that is used to connect 2 shafts that are not perfectly aligned. The coupling consists of a chain that is connected to 2 sprockets, 1 on each shaft. The chain allows the shafts to move slightly relative to each other, which helps to compensate for misalignment.

Shaft chain couplings are used in a wide variety of applications, including:

  • Conveyors: Shaft chain couplings are used in conveyors to transmit power from the motor to the conveyor belt.
  • Pumps: Shaft chain couplings are used in pumps to transmit power from the motor to the pump shaft.
  • Fans: Shaft chain couplings are used in fans to transmit power from the motor to the fan shaft.
  • Generators: Shaft chain couplings are used in generators to transmit power from the turbine to the generator rotor.
  • Wind turbines: Shaft chain couplings are used in wind turbines to transmit power from the turbine to the generator rotor.

Shaft chain couplings are a versatile and reliable type of coupling that can be used in a wide variety of applications. They offer a number of advantages over other types of couplings, including:

  • Can compensate for misalignment: Shaft chain couplings can compensate for misalignment up to 2 degrees. This makes them ideal for applications where the shafts are not perfectly aligned, such as when the equipment is installed in a new location or when the equipment is subject to vibration.
  • Easy to install: Shaft chain couplings are easy to install and maintain. They can be installed without special tools or training.
  • Available in a variety of sizes and styles: Shaft chain couplings are available in a variety of sizes and styles to meet the needs of different applications. This makes it easy to find a coupling that is the right size and style for your application.
  • Highly efficient: Shaft chain couplings are highly efficient, meaning that they transmit a large percentage of the power from the driving shaft to the driven shaft. This can save money on energy costs.
  • Durable: Shaft chain couplings are durable and can withstand a wide range of operating conditions.

Here are some of the disadvantages of using shaft chain couplings:

  • Cost: Shaft chain couplings can be more expensive than other types of couplings.
  • Maintenance: Shaft chain couplings require periodic maintenance, such as checking the coupling for wear and tear and lubricating the chain as needed.

Overall, shaft chain couplings are a versatile and reliable type of coupling that can be used in a wide variety of applications. They offer a number of advantages over other types of couplings, but they also have some disadvantages. The best type of coupling for a particular application will depend on the specific requirements of that application.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard Or Nonstandard: Standard
Shaft Hole: 8-24
Torque: >80N.M
Bore Diameter: 19mm
Speed: 4000r/M
Structure: Flexible
Samples:
US$ 9999/Piece
1 Piece(Min.Order)

|
Request Sample

China wholesaler Drive Pipe Spline Shaft Disc Flange Gear Rubber Jaw Motor Spacer Beam Rigid Fluid Chain Nm Mh HRC Pin Fenaflex Spacer Elastomeric Flexible Gear Coupling
China wholesaler Drive Pipe Spline Shaft Disc Flange Gear Rubber Jaw Motor Spacer Beam Rigid Fluid Chain Nm Mh HRC Pin Fenaflex Spacer Elastomeric Flexible Gear Coupling

spacer coupling

Can Spacer Couplings Accommodate High Torque and High-Speed Applications?

Yes, spacer couplings are designed to accommodate both high torque and high-speed applications. These couplings are known for their ability to transmit torque efficiently between shafts and handle various operating conditions. The design and material selection of spacer couplings allow them to excel in demanding industrial settings. Here’s how they handle high torque and high-speed applications:

1. Torque Capacity: Spacer couplings are often constructed with robust materials such as steel or stainless steel, which provide high torque capacity. The coupling’s design and material properties allow it to transmit substantial amounts of torque without failure. In heavy-duty applications, where high torque is prevalent, spacer couplings are a preferred choice.

2. High-Speed Operation: Spacer couplings are also well-suited for high-speed applications. The design of the coupling ensures a secure connection between the shafts while maintaining balance during rotation. The coupling’s precise machining and balance prevent vibration and misalignment, allowing for smooth operation at high rotational speeds.

3. Torsional Stiffness: Spacer couplings have good torsional stiffness, meaning they resist twisting under torque. This characteristic is essential for high-speed applications, as it helps maintain accurate shaft synchronization and minimizes torsional vibrations.

4. Customization: Manufacturers offer various spacer coupling designs and sizes to cater to specific torque and speed requirements. Depending on the application’s demands, users can select spacer couplings with the appropriate torque and speed ratings.

5. Maintenance: Proper maintenance is essential for ensuring that spacer couplings continue to handle high torque and high-speed applications effectively. Regular inspections, lubrication, and alignment checks can help identify and address potential issues before they escalate into problems.

When choosing a spacer coupling for high torque and high-speed applications, it is crucial to consider factors like the application’s torque and speed requirements, environmental conditions, and the coupling’s material and design specifications. Proper selection and installation of the spacer coupling contribute to the reliable and efficient performance of the machinery.

spacer coupling

Use of Spacer Couplings for Motor-to-Shaft and Shaft-to-Shaft Connections

Yes, spacer couplings can be used for both motor-to-shaft and shaft-to-shaft connections in various mechanical systems and power transmission applications. The versatility of spacer couplings allows them to accommodate different types of connections between rotating machinery and shafts.

1. Motor-to-Shaft Connections:

In motor-to-shaft connections, a motor is connected to a driven shaft or component. Spacer couplings can be utilized to bridge the gap between the motor and the driven shaft while maintaining the required alignment. These couplings help transmit torque from the motor to the driven shaft efficiently, ensuring smooth power transmission. They also compensate for any misalignment between the motor and the driven shaft, reducing the risk of mechanical stress and vibration-related issues.

2. Shaft-to-Shaft Connections:

For shaft-to-shaft connections, where two shafts need to be connected together, spacer couplings provide a flexible and reliable solution. Spacer couplings can handle angular, parallel, and axial misalignment between the shafts, allowing them to operate smoothly even when there are slight deviations in alignment. This capability helps prevent excessive wear and premature failure of equipment components.

Whether in motor-to-shaft or shaft-to-shaft connections, spacer couplings play a vital role in enhancing the reliability and efficiency of power transmission systems. They help protect connected equipment from shock loads, vibrations, and misalignment, ultimately contributing to extended service life and reduced maintenance requirements.

It is essential to select the appropriate type and size of spacer coupling based on the specific application requirements, including torque capacity, operating speed, shaft size, and environmental conditions. Proper installation and alignment of the spacer coupling are crucial to ensure optimal performance and reliability of the connected equipment.

China wholesaler Drive Pipe Spline Shaft Disc Flange Gear Rubber Jaw Motor Spacer Beam Rigid Fluid Chain Nm Mh HRC Pin Fenaflex Spacer Elastomeric Flexible Gear Coupling  China wholesaler Drive Pipe Spline Shaft Disc Flange Gear Rubber Jaw Motor Spacer Beam Rigid Fluid Chain Nm Mh HRC Pin Fenaflex Spacer Elastomeric Flexible Gear Coupling
editor by CX 2024-04-26

China OEM Spacer Flexible Clamp Type Jaw Coupling

Product Description

Spacer flexible clamp type Jaw coupling

1. Material: Medium Carbon Steel
2. ANSI standard
3. Protective cover and O-rings included
4. High flexibility and power transmission capacity
5. Good stability
6. Easy to maintain

The chain coupling, composed of two-strand roller chains and 2 sprockets, features simple and compact structure, and high flexibility, power transmission capability and durability. What’s more, the chain coupling allows simple connection/disconnection, and the use of the housing enhances safety and durability.

PACKAGE
1.Polybag+Box+Case
2.According to customers’demand.

Choose TAI

1. TAI with sophisticated CNC equipment, advanced technology and perfect inspection equipment produce all kinds of chains, sprockets and other transmission equipments which can make the customers’ trust. The company since its establishment has passed ISO9001 and other certifications. “High quality, high benefit, high standards” to sing more integrated into the world. Adhering to the “good faith service to customers” purposes, from being in order to after-sales service, each bit closely link, TAI will provide the most intimate, comprehensive service.

2. “Meet the customers’ requirement, until customers’ satisfaction” is our goal from start to finish, better innovation and better cooperation can create better TAI to service the world. Let us work together, to create a better future with each other.

 

SPECIFICATION
TYRE    COUPLING 
F    40  H 
F    70  S   TYRES
F    90  S   TYRES
F    100F   
F    100H
F    100S   TYRES
F    110S   TYRES
F    120S   TYRES
F    140F
F    140H
F    140S    TYRES
F    160H
F    160S    TYRES
F    180F
F    180H
F    180S    TYRES
CONE     RING    COUPLINGS
M10      NUT& BOLT  SETS
M10      RUBBERS
M12      RUBBERS
M20      RUBBERS
M20      NUT&BOLT  SETS

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Connection: Flange
Structure: Universal
Flexible or Rigid: Flexible
Material: Carbon Steel
Standard: Standard
Trade Style: Trade/Manufacture/OEM
Customization:
Available

|

Customized Request

China OEM Spacer Flexible Clamp Type Jaw Coupling
China OEM Spacer Flexible Clamp Type Jaw Coupling

spacer coupling

What Are the Maintenance Requirements for Spacer Couplings?

Spacer couplings are relatively low-maintenance compared to some other types of couplings. However, regular inspections and preventive measures are essential to ensure their optimal performance and longevity. Here are the key maintenance requirements for spacer couplings:

1. Visual Inspections: Regularly inspect the spacer coupling and its components for signs of wear, damage, or misalignment. Look for any visible cracks, corrosion, or deformation.

2. Lubrication: Some spacer couplings may require periodic lubrication, especially if they have rolling elements such as bearings or if the coupling design necessitates lubrication. Follow the manufacturer’s guidelines for the appropriate lubrication intervals and type of lubricant to use.

3. Alignment Checks: Proper alignment between the connected shafts is crucial for spacer coupling performance. Periodically check and adjust the alignment to ensure that the coupling operates smoothly and efficiently. Misalignment can lead to premature wear and failure of the coupling.

4. Bolt Tightening: Check and tighten the coupling bolts regularly to maintain the desired clamping force. Loose bolts can cause vibrations and compromise the integrity of the coupling connection.

5. Environmental Considerations: In harsh or corrosive environments, pay close attention to the effects of the operating conditions on the coupling. Consider using corrosion-resistant materials or protective coatings to prolong the coupling’s life.

6. Replacement of Worn Components: If any components of the spacer coupling show signs of wear or damage beyond acceptable limits, replace them promptly. This includes components like the spacer, bolts, and locking devices.

7. Regular Maintenance Schedule: Develop a regular maintenance schedule based on the coupling manufacturer’s recommendations and the specific operating conditions of the machinery. A well-maintained coupling can significantly extend the life of the connected equipment.

8. Consult Manufacturer Guidelines: Always refer to the manufacturer’s maintenance guidelines and recommendations. They will provide specific instructions on maintenance intervals and procedures for the particular spacer coupling model.

By following these maintenance practices, you can ensure that the spacer coupling remains in optimal condition, reduces the risk of unexpected failures, and contributes to the overall reliability and efficiency of the machinery it connects.

spacer coupling

Use of Spacer Couplings for Motor-to-Shaft and Shaft-to-Shaft Connections

Yes, spacer couplings can be used for both motor-to-shaft and shaft-to-shaft connections in various mechanical systems and power transmission applications. The versatility of spacer couplings allows them to accommodate different types of connections between rotating machinery and shafts.

1. Motor-to-Shaft Connections:

In motor-to-shaft connections, a motor is connected to a driven shaft or component. Spacer couplings can be utilized to bridge the gap between the motor and the driven shaft while maintaining the required alignment. These couplings help transmit torque from the motor to the driven shaft efficiently, ensuring smooth power transmission. They also compensate for any misalignment between the motor and the driven shaft, reducing the risk of mechanical stress and vibration-related issues.

2. Shaft-to-Shaft Connections:

For shaft-to-shaft connections, where two shafts need to be connected together, spacer couplings provide a flexible and reliable solution. Spacer couplings can handle angular, parallel, and axial misalignment between the shafts, allowing them to operate smoothly even when there are slight deviations in alignment. This capability helps prevent excessive wear and premature failure of equipment components.

Whether in motor-to-shaft or shaft-to-shaft connections, spacer couplings play a vital role in enhancing the reliability and efficiency of power transmission systems. They help protect connected equipment from shock loads, vibrations, and misalignment, ultimately contributing to extended service life and reduced maintenance requirements.

It is essential to select the appropriate type and size of spacer coupling based on the specific application requirements, including torque capacity, operating speed, shaft size, and environmental conditions. Proper installation and alignment of the spacer coupling are crucial to ensure optimal performance and reliability of the connected equipment.

China OEM Spacer Flexible Clamp Type Jaw Coupling  China OEM Spacer Flexible Clamp Type Jaw Coupling
editor by CX 2024-04-25

China factory Element Coupling Tire Spacer Coupling Tyre Flexible Coupling

Product Description

Product Description

1 Good quality with competitive prices.
2 For Free Samples
3 Prompt delivery
4 International Approvals

Coupling:

1. Jaw coupling/ HRC coupling / KC coupling / FL coupling
2. Flange cast iron, Insert Bubber
3. Taper bore universal series
4. Keyway dimensions conform to DIN6885, GB1095-1979 standards.
 

Product Attribute

Material

Low Carbon Steel

Surface Finishing

Zinc Plated

Customized

Non-Customized

Connection

Flange

port

ZheJiang

payment

L/C, T/T, D/P, Western Union, Paypal

package

Woddencase Suitable for Sea Shipping/Airfreight

Detailed Photos

 

Product Parameters

 

 

Our Advantages

Company advantages:
Own Import & Export License, The TV trade mark registered successfully in many countries, Sales network spread all over China, Products export to 65 countries in 5 continents.

Membership:
1. The member of China General Machine Components Industry Association.
2. The member of China Chain Transmission Association.
3. The member of China Chain Standardization Association.
4. The member of China Agricultural Association Machinery Manufacturers.

With our excellent trained staffs and workers, advanced and efficient equipments, completely sales network, strict QA systems. You are confidence that our premium qualified chain can meet all customers’ specification and strictest quality standards.

WHY CHOOSE US

Comprehensive Product Portfolio We produce and supply a wide range of power transmission
products including drive chains, leaf chains, conveyor chains, agricultural chains, sprockets, and
couplings. This one-store-for-all shopping experience will significantly reduce your searching costs while
guarantee youfind what you want at 1 click.

Value Choice Products Our products are the best combination of quality and price, and you get what
you want within your budgets

Seasoned Sales Associates and Engineers We have 15 seasoned sales associates and 5 engineers;
on our team at your disposal any time when you need a helping hand. They are well trained with industry
know-now and will always respond to your requests within 24 hours.
100% Customer Retention Rate Our regular customers from overseas come back not just for our
premium quality products, but for the superior services that we’ve provided over the years.

FAQ

Q1: What’s your average lead time?
A: It varies. Our regular end-to-end lead time is 1-2 months.. We also provide express shipments for rush orders. For details,please consult our sales associate.

Q2: Is your price better than your competitors given the same quality?
A: Definitely YES. We provide the most competitive price in the power transmission industry. If price disparity exists, we’ll be more than happy to do a price match.
Q3: Can you make chains according to my CAD drawings?
A: Yes. Besides the regular standard chains, we produce non-standard and custom-design products to meet the specific technical requirements. In reality, a sizable portion of our production capacity is assigned to make non-standard products.

Q4: Can we inspect the goods before shipment?
A: Yes. You or your representative or any third-party inspection party assigned is allowed access to our facility and do the inspection.

Q5: What kind of payment method is acceptable for your mill?
A: We’re flexible. We take T/T, L/C, or any other online payment methods so long as it’s applicable for you.

Q6: What if I have any other questions?
A: Whenever in doubt, you’re always encouraged to consult our sales associate any time – They will help you to your satisfaction.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: Low Carbon Steel
Surface Finishing: Zinc Plated
Customized: Non-Customized
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

China factory Element Coupling Tire Spacer Coupling Tyre Flexible Coupling
China factory Element Coupling Tire Spacer Coupling Tyre Flexible Coupling

spacer coupling

How Do Spacer Couplings Compare to Other Types of Couplings in Terms of Performance?

Spacer couplings offer distinct advantages and disadvantages compared to other types of couplings, making them suitable for specific applications:

1. Misalignment Tolerance: Spacer couplings have limited flexibility and can handle only minor misalignment between shafts. In contrast, flexible couplings like elastomeric and gear couplings can accommodate higher levels of misalignment due to their elastic properties.

2. Torque Transmission: Spacer couplings provide excellent torque transmission capabilities, making them suitable for heavy-duty applications. They can efficiently transfer torque between shafts without backlash.

3. Maintenance Requirements: Spacer couplings are relatively simple in design and do not require frequent maintenance. They do not have moving parts or wearing elements, reducing the need for regular inspection and replacement.

4. Torsional Stiffness: Spacer couplings offer high torsional stiffness, ensuring precise and reliable torque transmission between the connected equipment.

5. Installation and Alignment: Installing a spacer coupling requires careful alignment between shafts. While it may be more involved compared to some flexible couplings, proper alignment is essential for optimal performance.

6. Cost: Spacer couplings are generally more cost-effective than some high-performance flexible couplings, making them an attractive choice for various industrial applications.

7. Application Suitability: Spacer couplings are commonly used in applications where rigid and reliable torque transmission is required, such as pumps, compressors, and other heavy machinery.

8. Operating Conditions: Spacer couplings can handle high temperatures, making them suitable for applications in challenging environments.

When selecting a coupling for a specific application, it is essential to consider the specific needs of the system, including the required misalignment compensation, torque transmission capacity, maintenance requirements, and operating conditions. Each coupling type has its strengths and limitations, and the choice will depend on the unique demands of the application.

spacer coupling

Can Spacer Couplings be Used in Applications with Varying Operating Temperatures?

Yes, spacer couplings can be used in applications with varying operating temperatures. The suitability of a spacer coupling for a specific temperature range depends on the materials used in its construction.

Many spacer couplings are designed to withstand a wide range of temperatures, making them versatile for use in diverse industrial environments. Some key considerations regarding temperature and spacer couplings include:

1. Material Selection: The choice of materials plays a crucial role in determining the temperature range that a spacer coupling can handle. Common materials used for spacer couplings include steel, stainless steel, aluminum, and various alloys. Each material has its own temperature limits, and it is essential to select a coupling made from materials that can withstand the anticipated temperature conditions in the application.

2. High-Temperature Applications: For high-temperature applications, spacer couplings made from materials with excellent heat resistance are suitable. Stainless steel and high-temperature alloys are often used in such cases. These materials can withstand elevated temperatures without losing their mechanical properties, ensuring reliable performance under extreme conditions.

3. Low-Temperature Applications: In low-temperature environments, certain materials may become brittle and lose their toughness. Spacer couplings intended for use in cold environments should be made from materials that remain ductile and reliable at low temperatures. Special low-temperature steels or alloys are commonly used for these applications.

4. Thermal Expansion: Spacer couplings should also account for the thermal expansion that occurs in machinery as it operates at varying temperatures. Different materials have different coefficients of thermal expansion, and the design of the coupling must consider these factors to prevent issues related to differential thermal expansion between connected components.

5. Insulation: In some applications, particularly in industries where electrical insulation is critical, spacer couplings with insulating properties may be necessary to prevent electrical conduction between connected shafts. Insulating spacer couplings are commonly used in electric motor drives and other electrical systems to enhance safety and prevent electrical interference.

When selecting a spacer coupling for an application with varying operating temperatures, it is essential to consider the specific temperature requirements of the system, the materials used in the coupling’s construction, and any additional factors related to thermal expansion and insulation. Consulting with coupling manufacturers or experts can help ensure the correct coupling is chosen for the specific temperature conditions in which it will operate.

China factory Element Coupling Tire Spacer Coupling Tyre Flexible Coupling  China factory Element Coupling Tire Spacer Coupling Tyre Flexible Coupling
editor by CX 2024-04-25